翻訳と辞書 |
Spinor bundle : ウィキペディア英語版 | Spinor bundle In differential geometry, given a spin structure on a -dimensional Riemannian manifold one defines the spinor bundle to be the complex vector bundle associated to the corresponding principal bundle of spin frames over and the spin representation of its structure group is called a spinor field. ==Formal definition== Let be a spin structure on a Riemannian manifold that is, an equivariant lift of the oriented orthonormal frame bundle with respect to the double covering The spinor bundle is defined 〔 page 53 〕 to be the complex vector bundle : associated to the spin structure via the spin representation where denotes the group of unitary operators acting on a Hilbert space It is worth noting that the spin representation is a faithful and unitary representation of the group .〔 pages 20 and 24〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Spinor bundle」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|